Package: SequenceSpikeSlab (via r-universe)

September 10, 2024

Type Package

Title Exact Bayesian Model Selection Methods for the Sparse Normal Sequence Model

Version 1.0.1

Author Steven de Rooij [aut], Tim van Erven [cre, aut], Botond Szabo [aut]

Maintainer Tim van Erven <tim@timvanerven.nl>

Description Contains fast functions to calculate the exact Bayes posterior for the Sparse Normal Sequence Model, implementing the algorithms described in Van Erven and Szabo (2021, [<doi:10.1214/20-BA1227>](https://doi.org/10.1214/20-BA1227)). For general hierarchical priors, sample sizes up to 10,000 are feasible within half an hour on a standard laptop. For beta-binomial spike-and-slab priors, a faster algorithm is provided, which can handle sample sizes of 100,000 in half an hour. In the implementation, special care has been taken to assure numerical stability of the methods even for such large sample sizes.

License GPL $(>= 2)$

Imports Rcpp ($>= 0.12.18$), RcppProgress ($>= 0.4.1$), selectiveInference $(>= 1.2.5)$

LinkingTo Rcpp, RcppProgress

RoxygenNote 7.2.3

Encoding UTF-8

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Date/Publication 2023-09-08 12:50:02 UTC

Repository https://tverven.r-universe.dev

RemoteUrl https://github.com/cran/SequenceSpikeSlab

RemoteRef HEAD

RemoteSha d6a341f86b8e6b1682553362db7b597ceeea3104

Contents

fast_spike_slab_beta *Compute marginal posterior estimates for beta-spike-and-slab prior*

Description

Computes marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the spike-and-slab prior with a Beta(beta_kappa,beta_lambda) prior on the mixing parameter. The posterior mean is also provided.

Usage

```
fast_spike_slab_beta(
 x,
  sigma = 1,
 m = 20,
 slab = "Laplace",
 Laplace_lambda = 0.5,
 Cauchy_gamma = 1,
 beta_kappa = 1,
 beta_lambda,
 show_progress = TRUE
```

```
)
```
Arguments

Details

The run-time is $O(m^*n^{\alpha}(3/2))$ on n data points, which means that doubling the size of the data leads to an increase in computation time by approximately a factor of $2*sqrt(2)=2.8$. Data sets of size n=100,000 should be feasible within approximately 30 minutes.

Value

list (postprobs, postmean, sigma), where postprobs is a vector of marginal posterior slab probabilities that $x[i]$ has non-zero mean for $i = 1, ..., n$; postmean is a vector with the posterior mean for the $x[i]$; and sigma is the value of sigma (this may be of interest when the sigma="auto" option is used)

Examples

Illustrate that fast_spike_slab_beta is a faster way to compute the same results as # general_sequence_model on the beta-binomial prior

```
# Generate data
n <- 500 # sample size
n_signal \leq- 25 # number of non-zero theta
A \le -5 # signal strength
theta <- c(rep(A,n_signal), rep(0,n-n_signal))
x \le - theta + rnorm(n, sd=1)
# Choose slab
slab <- "Cauchy"
Cauchy_gamma <- 1
cat("Running fast_spike_slab_beta (fast for very large n)...\n")
res_fss <- fast_spike_slab_beta(x, sigma=1, slab=slab, Cauchy_gamma=Cauchy_gamma)
cat("Running general_sequence_model (slower for very large n)...\n")
res_gsm <- general_sequence_model(x, sigma=1, slab=slab,
                                 log_prior="beta-binomial", Cauchy_gamma=Cauchy_gamma)
cat("Maximum difference in marginal posterior slab probabilities:",
    max(abs(res_gsm$postprobs - res_fss$postprobs)))
```

```
cat("\nMaximum difference in posterior means:",
```

```
max(abs(res_gsm$postmean - res_fss$postmean)), "\n")
# Plot means
M = max(abs(x)) + 1plot(1:n, x, pch=20, ylim=c(-M,M), col='green', xlab="", ylab="",
     main="Posterior Means (Same for Both Methods)")
points(1:n, theta, pch=20, col='blue')
points(1:n, res_gsm$postmean, pch=20, col='black', cex=0.6)
points(1:n, res_fss$postmean, pch=20, col='magenta', cex=0.6)
legend("topright", legend=c("general_sequence_model", "fast_spike_slab_beta",
                            "data", "truth"),
       col=c("black", "magenta", "green", "blue"), pch=20, cex=0.7)
```

```
general_sequence_model
```
Compute marginal posterior estimates

Description

This function computes marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the general hierarchical prior in the sparse normal sequence model. The posterior mean is also provided.

Usage

```
general_sequence_model(
 x,
  sigma = 1,
  slab = "Laplace",
  log_prior = "beta-binomial",
 Laplace_lambda = 0.5,
  Cauchy_gamma = 1,
 beta_kappa = 1,
 beta_lambda,
  show_progress = TRUE
)
```
Arguments

show_progress Boolean that indicates whether to show a progress bar

Details

The run-time is $O(n^2)$ on n data points, which means that doubling the size of the data leads to an increase in computation time by approximately a factor of 4. Data sets of size n=25,000 should be feasible within approximately 30 minutes.

Value

list (postprobs, postmean, sigma), where postprobs is a vector of marginal posterior slab probabilities that $x[i]$ has non-zero mean for $i = 1, ..., n$; postmean is a vector with the posterior mean for the $x[i]$; and sigma is the value of sigma (this may be of interest when the sigma="auto" option is used)

Examples

Experiments similar to those of Castilo, Van der Vaart, 2012

```
# Generate data
n <- 500 # sample size
n_signal <- 25 # number of non-zero theta
A \leq -5 # signal strength
theta <- c(rep(A,n_signal), rep(0,n-n_signal))
x \le - theta + rnorm(n, sd=1)
# Choose slab
slab <- "Laplace"
Laplace_lambda <- 0.5
# Prior 1
kappa1 <- 0.4 # hyperparameter
logprior1 \leq c(0, -kappa1*(1:n)*log(n*3/(1:n)))res1 <- general_sequence_model(x, sigma=1,
                              slab=slab,
                              log_prior=logprior1,
                              Laplace_lambda=Laplace_lambda)
print("Prior 1: Elements with marginal posterior probability >= 0.5:")
print(which(res1$postprobs >= 0.5))
# Prior 2
kappa2 \leq -0.8 # hyperparameter
logprior2 <- kappa2*lchoose(2*n-0:n,n)
```

```
res2 <- general_sequence_model(x, sigma=1,
                               slab=slab,
                               log_prior=logprior2,
                               Laplace_lambda=Laplace_lambda)
print("Prior 2: Elements with marginal posterior probability >= 0.5:")
print(which(res2$postprobs >= 0.5))
# Prior 3
beta_kappa \leq -1 # hyperparameter
beta_lambda <- n+1 # hyperparameter
res3 <- general_sequence_model(x, sigma=1,
                               slab=slab,
                               log_prior="beta-binomial",
                               Laplace_lambda=Laplace_lambda)
print("Prior 3: Elements with marginal posterior probability >= 0.5:")
print(which(res3$postprobs >= 0.5))
# Plot means for all priors
M=max(abs(x))+1plot(1:n, x, pch=20, ylim=c(-M,M), col='green', xlab="", ylab="", main="Posterior Means")
points(1:n, theta, pch=20, col='blue')
points(1:n, res1$postmean, pch=20, col='black', cex=0.6)
points(1:n, res2$postmean, pch=20, col='magenta', cex=0.6)
points(1:n, res3$postmean, pch=20, col='red', cex=0.6)
legend("topright", legend=c("posterior mean 1", "posterior mean 2", "posterior mean 3",
                            "data", "truth"),
      col=c("black", "magenta", "red", "green", "blue"), pch=20, cex=0.7)
```
SSS_discrete_spike_slab

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the discretized spike-and-slab prior.

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the discretized spike-and-slab prior.

Usage

```
SSS_discrete_spike_slab(log_phi_psi, dLambda, show_progress = TRUE)
```
Arguments

log_phi_psi List {logphi, logpsi} containing two vectors of the same length n that represent a preprocessed version of the data. logphi and logpsi should contain the logs of the phi and psi densities of the data points, as produced for instance by [SSS_log_phi_psi_Laplace](#page-10-1) or [SSS_log_phi_psi_Cauchy](#page-9-1)

Value

Returns a vector with marginal posterior slab probabilities that $x[i]$ has non-zero mean for $i =$ $1, ..., n$.

Description

Given a prior Lambda on the alpha-parameter in the spike-and-slab model, make a discretized version of Lambda that is only supported on a grid of approximately m * sqrt(n) discrete values of alpha. This discretized version of Lambda is required as input for [SSS_discrete_spike_slab](#page-5-1). NB Lambda needs to satisfy a technical condition from the paper that guarantees its density does not vary too rapidly. For Lambda=Beta(kappa,lambda) use [SSS_discretize_Lambda_beta](#page-7-1) instead.

Usage

```
SSS_discretize_Lambda(m = 20, n, log_Lambda_cdf)
```
Arguments

Value

List (alpha_grid, log_probs), where alpha_grid is a vector with the generated grid points, and log_probs are the logs of the prior probabilities of these grid points for the discretized Lambda prior.

SSS_discretize_Lambda_beta

*Given prior Lambda=Beta(kappa,lambda) on the alpha-parameter in the spike-and-slab model, make a discretized version of Lambda that is only supported on a grid of approximately m * sqrt(n) discrete values of alpha. This discretized version of Lambda is required as input for SSS_discrete_spike_slab.*

Description

Given prior Lambda=Beta(kappa,lambda) on the alpha-parameter in the spike-and-slab model, make a discretized version of Lambda that is only supported on a grid of approximately $m * sqrt(n)$ discrete values of alpha. This discretized version of Lambda is required as input for SSS_discrete_spike_slab.

Usage

SSS_discretize_Lambda_beta(m = 20, n, kappa, lambda)

Arguments

Value

List (alpha_grid, log_probs), where alpha_grid is a vector with the generated grid points, and log_probs are the logs of the prior probabilities of these grid points for the discretized Lambda prior.

SSS_hierarchical_prior

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the hierarchical prior.

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean for the hierarchical prior.

Usage

```
SSS_hierarchical_prior(log_phi_psi, logprior, show_progress = TRUE)
```
Arguments

Value

Returns a vector with marginal posterior slab probabilities that $x[i]$ has non-zero mean for $i =$ $1, ..., n$.

SSS_hierarchical_prior_binomial

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean using the general hierarchical prior algorithm, but specialized to the Beta[kappa,lambda]-binomial prior. This function is equivalent to calling [SSS_hierarchical_prior](#page-7-2) $with$ $logprior$ = $lbeta(kappa+(0:n),lambda+n-(0:n))$ *lbeta(kappa,lambda) + lchoose(n,0:n), but more convenient when using the Beta[kappa,lambda]-binomial prior and with a minor interior optimization that avoids calculating the choose explicitly.*

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean using the general hierarchical prior algorithm, but specialized to the Beta[kappa,lambda]-binomial prior. This function is equivalent to calling [SSS_hierarchical_prior](#page-7-2) with logprior = lbeta(kappa+(0:n),lambda+n- $(0:n)$ - lbeta(kappa,lambda) + lchoose $(n,0:n)$, but more convenient when using the Beta[kappa,lambda]binomial prior and with a minor interior optimization that avoids calculating the choose explicitly.

Usage

```
SSS_hierarchical_prior_binomial(
  log_phi_psi,
  kappa,
  lambda,
  show_progress = TRUE
)
```
Arguments

log_phi_psi List {logphi, logpsi} containing two vectors of the same length n that represent a preprocessed version of the data. logphi and logpsi should contain the logs of the phi and psi densities of the data points, as produced for instance by [SSS_log_phi_psi_Laplace](#page-10-1) or [SSS_log_phi_psi_Cauchy](#page-9-1)

Value

Returns a vector with marginal posterior slab probabilities that $x[i]$ has non-zero mean for $i =$ $1, ..., n$.

SSS_log_phi_psi_Cauchy

Calculate log of phi and psi marginal densities for Cauchy(gamma) slab

Description

Calculate log of densities phi and psi for data vector x, where

 $phi[i] = Normal(x[i], sigma^2)$

$$
psi[i]) = E_Cauchy(\theta)[Normal(x[i] - \theta, sigma^2)]
$$

Usage

SSS_log_phi_psi_Cauchy(x, sigma, gamma)

Arguments

Value

list (phi, psi), containing logs of phi and psi densities

Calculate log of phi and psi marginal densities for Laplace(lambda) slab

Description

Calculate log of densities phi and psi for data vector x, where

$$
phi[i] = Normal(x[i], sigma^2)
$$

$$
psi[i]) = E_Laplace(\theta)[Normal(x[i] - \theta, sigma^2)]
$$

Usage

SSS_log_phi_psi_Laplace(x, sigma, lambda)

Arguments

Value

list (phi, psi), containing logs of phi and psi densities

SSS_make_beta_grid *Creates a vector of uniformly spaced grid points in the beta parametrization Ensures the number of generated grid points is >= mingridpoints (which does not have to be integer), and that their number is always odd so there is always a grid point at pi/4.*

Description

Creates a vector of uniformly spaced grid points in the beta parametrization Ensures the number of generated grid points is >= mingridpoints (which does not have to be integer), and that their number is always odd so there is always a grid point at pi/4.

Usage

SSS_make_beta_grid(minngridpoints)

Arguments

minngridpoints Minimum number of grid points

Value

Vector of betagrid points

SSS_postmean_Cauchy *Compute posterior means of data points for the Cauchy(gamma) slab*

Description

Compute posterior means of data points for the Cauchy(gamma) slab

Usage

SSS_postmean_Cauchy(x, logpsi, postprobs, sigma, gamma)

Arguments

Value

Vector of n posterior means

SSS_postmean_Laplace *Compute posterior means of data points for the Laplace(lambda) slab*

Description

Compute posterior means of data points for the Laplace(lambda) slab

Usage

SSS_postmean_Laplace(x, logpsi, postprobs, sigma, lambda)

Arguments

Value

Vector of n posterior means

Index

fast_spike_slab_beta, [2](#page-1-0) general_sequence_model, [4](#page-3-0) SSS_discrete_spike_slab, [6,](#page-5-0) *[7](#page-6-0)* SSS_discretize_Lambda, [7](#page-6-0) SSS_discretize_Lambda_beta, *[7](#page-6-0)*, [8](#page-7-0) SSS_hierarchical_prior, [8,](#page-7-0) *[9](#page-8-0)* SSS_hierarchical_prior_binomial, [9](#page-8-0) SSS_log_phi_psi_Cauchy, *[6](#page-5-0)*, *[9](#page-8-0)*, [10,](#page-9-0) *[12](#page-11-0)* SSS_log_phi_psi_Laplace, *[6](#page-5-0)*, *[9](#page-8-0)*, [11,](#page-10-0) *[13](#page-12-0)*

SSS_make_beta_grid, [11](#page-10-0) SSS_postmean_Cauchy, [12](#page-11-0) SSS_postmean_Laplace, [12](#page-11-0)